Sequence Search | Advanced Search | SPARQL
Showing 1 - 33 of 33 result(s)



Public
Pichia MoClo Toolkit (Lu Lab)
Pichia_MoClo_Toolkit_Lu_Lab_collection Version 1 (Collection)
Pichia MoClo Toolkit (Lu Lab)
Public
A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in Burkholderia
sb9b00232 Version 1 (Collection)
Genetic tools are critical to dissecting the mechanisms governing cellular processes, from fundamental physiology to pathogenesis. Members of the genus Burkholderia have potential for biotechnological applications but can also cause disease in humans with a debilitated immune system. The lack of suitable genetic tools to edit Burkholderia GC-rich genomes has hampered the exploration of useful capacities and the understanding of pathogenic features. To address this, we have developed CRISPR interference (CRISPRi) technology for gene silencing in Burkholderia, testing it in B. cenocepacia, B. multivorans, and B. thailandensis. Tunable expression was provided by placing a codon-optimized dcas9 from Streptococcus pyogenes under control of a rhamnose-inducible promoter. As a proof of concept, the paaABCDE operon controlling genes necessary for phenylacetic acid degradation was targeted by plasmid-borne gRNAs, resulting in near complete inhibition of growth on phenylacetic acid as the sole carbon source. This was supported by reductions in paaA mRNA expression. The utility of CRISPRi to probe other functions at the single cell level was demonstrated by knocking down phbC and fliF, which dramatically reduces polyhydroxybutyrate granule accumulation and motility, respectively. As a hallmark of the mini-CTX system is the broad host-range of integration, we putatively identified 67 genera of Proteobacteria that might be amenable to modification with our CRISPRi toolkit. Our CRISPRi toolkit provides a simple and rapid way to silence gene expression to produce an observable phenotype. Linking genes to functions with CRISPRi will facilitate genome editing with the goal of enhancing biotechnological capabilities while reducing Burkholderia’s pathogenic arsenal.
Public
RpaR
RpaR Version 1 (Component)
RpaR transcriptional activator from [1]. RpaR activates transcription from PRpa, which is not included in this kit, in the presence of p-coumaroyl HSL. It may also activate PRpa-M (P37m), though we have not tested that functionality
Public
CIDAR MoClo Toolkit (Densmore Lab)
CIDAR_MoClo_Toolkit_Densmore_Lab_collection Version 1 (Collection)
CIDAR MoClo Toolkit (Densmore Lab)
Public
CIDAR MoClo Extension Kit Volume I (Murray Lab)
CIDAR_MoClo_Extension_Kit_Volume_I_Murray_Lab_collection Version 1 (Collection)
CIDAR MoClo Extension Kit Volume I (Murray Lab)
Public
Modularized CRISPR/dCas9 Effector Toolkit for Target-Specific Gene Regulation
sb500035y Version 1 (Collection)
The ability to control mammalian genes in a synergistic mode using synthetic transcription factors is highly desirable in fields of tissue engineering, stem cell reprogramming and fundamental research. In this study, we developed a standardized toolkit utilizing an engineered CRISPR/Cas9 system that enables customizable gene regulation in mammalian cells. The RNA-guided dCas9 protein was implemented as a programmable transcriptional activator or repressor device, including targeting of endogenous loci. For facile assembly of single or multiple CRISPR RNAs, our toolkit comprises a modular RNAimer plasmid, which encodes the required noncoding RNA components.
Public
A Modular Toolkit for Generating Pichia pastoris Secretion Libraries
sb6b00337 Version 1 (Collection)
Yeasts are powerful eukaryotic hosts for the production of recombinant proteins due to their rapid growth to high cell densities and ease of genetic modification. For large-scale industrial production, secretion of a protein offers the advantage of simple and efficient downstream purification that avoids costly cell rupture, denaturation and refolding. The methylotrophic yeast Pichia pastoris (Komagataella phaffi) is a well-established expression host that has the ability to perform post-translational modifications and is generally regarded as safe (GRAS). Nevertheless, optimization of protein secretion in this host remains a challenge due to the multiple steps involved during secretion and a lack of genetic tools to tune this process. Here, we developed a toolkit of standardized regulatory elements specific for Pichia pastoris allowing the tuning of gene expression and choice of protein secretion tag. As protein secretion is a complex process, these parts are compatible with a hierarchical assembly method to enable the generation of large and diverse secretion libraries in order to explore a wide range of secretion constructs, achieve successful secretion, and better understand the regulatory factors of importance to specific proteins of interest. To assess the performance of these parts, we built and characterized the expression and secretion efficiency of 124 constructs that combined different regulatory elements with two fluorescent reporter proteins (RFP, yEGFP). Intracellular expression from our promoters was comparatively independent of whether RFP or yEGFP, and whether plasmid-based expression or genomically integrated expression, was used. In contrast, secretion efficiency significantly varied for different genes expressed using identical regulatory elements, with differences in secretion efficiency of >10-fold observed. These results highlight the importance of generating diverse secretion libraries when searching for optimal expression conditions, and demonstrate that our toolkit is a valuable asset for the creation of efficient microbial cell factories.
Public
Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids
sb7b00399 Version 1 (Collection)
Engineering the bacteria present in animal microbiomes promises to lead to breakthroughs in medicine and agriculture, but progress is hampered by a dearth of tools for genetically modifying the diverse species that comprise these communities. Here we present a toolkit of genetic parts for the modular construction of broad-host-range plasmids built around the RSF1010 replicon. Golden Gate assembly of parts in this toolkit can be used to rapidly test various antibiotic resistance markers, promoters, fluorescent reporters, and other coding sequences in newly isolated bacteria. We demonstrate the utility of this toolkit in multiple species of Proteobacteria that are native to the gut microbiomes of honey bees (Apis mellifera) and bumble bees (Bombus sp.). Expressing fluorescent proteins in Snodgrassella alvi, Gilliamella apicola, Bartonella apis, and Serratia strains enables us to visualize how these bacteria colonize the bee gut. We also demonstrate CRISPRi repression in B. apis and use Cas9-facilitated knockout of an S. alvi adhesion gene to show that it is important for colonization of the gut. Beyond characterizing how the gut microbiome influences the health of these prominent pollinators, this bee microbiome toolkit (BTK) will be useful for engineering bacteria found in other natural microbial communities.
Public
Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630
sb7b00416 Version 1 (Collection)
Rhodococcus opacus PD630 is a non-model Gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized because of a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ∼45-fold in output was constructed. To improve the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.
Public
Genetically Encoded Sender–Receiver System in 3D Mammalian Cell Culture
sb400053b Version 1 (Collection)
Engineering spatial patterning in mammalian cells, employing entirely genetically encoded components, requires solving several problems. These include how to code secreted activator or inhibitor molecules and how to send concentration-dependent signals to neighboring cells, to control gene expression. The Madin–Darby Canine Kidney (MDCK) cell line is a potential engineering scaffold as it forms hollow spheres (cysts) in 3D culture and tubulates in response to extracellular hepatocyte growth factor (HGF). We first aimed to graft a synthetic patterning system onto single developing MDCK cysts. We therefore developed a new localized transfection method to engineer distinct sender and receiver regions. A stable reporter line enabled reversible EGFP activation by HGF and modulation by a secreted repressor (a truncated HGF variant, NK4). By expanding the scale to wide fields of cysts, we generated morphogen diffusion gradients, controlling reporter gene expression. Together, these components provide a toolkit for engineering cell–cell communication networks in 3D cell culture.
Public
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology
sb6b00031 Version 1 (Collection)
Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.
Public
Dynamic Control of Aptamer–Ligand Activity Using Strand Displacement Reactions
sb7b00277 Version 1 (Collection)
Nucleic acid aptamers are an expandable toolkit of sensors and regulators. To employ aptamer regulators within nonequilibrium molecular networks, the aptamer–ligand interactions should be tunable over time, so that functions within a given system can be activated or suppressed on demand. This is accomplished through complementary sequences to aptamers, which achieve programmable aptamer–ligand dissociation by displacing the aptamer from the ligand. We demonstrate the effectiveness of our simple approach on light-up aptamers as well as on aptamers inhibiting viral RNA polymerases, dynamically controlling the functionality of the aptamer–ligand complex. Mathematical models allow us to obtain estimates for the aptamer displacement kinetics. Our results suggest that aptamers, paired with their complement, could be used to build dynamic nucleic acid networks with direct control over a variety of aptamer-controllable enzymes and their downstream pathways.
Public
Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection
sb8b00087 Version 1 (Collection)
Clostridium difficile is often the primary cause of nosocomial diarrhea, leading to thousands of deaths annually worldwide. The availability of an efficient genome editing tool for C. difficile is essential to understanding its pathogenic mechanism and physiological behavior. Although CRISPR-Cas9 has been extensively employed for genome engineering in various organisms, large gene deletion and multiplex genome editing is still challenging in microorganisms with underdeveloped genetic engineering tools. Here, we describe a streamlined CRISPR-Cpf1-based toolkit to achieve precise deletions of fur, tetM, and ermB1/2 in C. difficile with high efficiencies. All of these genes are relevant to important phenotypes (including iron uptake, antibiotics resistance, and toxin production) as related to the pathogenesis of C. difficile infection (CDI). Furthermore, we were able to delete an extremely large locus of 49.2-kb comprising a phage genome (phiCD630-2) and realized multiplex genome editing in a single conjugation with high efficiencies (simultaneous deletion of cwp66 and tcdA). Our work highlighted the first application of CRISPR-Cpf1 for multiplexed genome editing and extremely large gene deletion in C. difficile, which are both crucial for understanding the pathogenic mechanism of C. difficile and developing strategies to fight against CDI. In addition, for the DNA cloning, we developed a one-step-assembly protocol along with a Python-based algorithm for automatic primer design, shortening the time for plasmid construction to half that of conventional procedures. The approaches we developed herein are easily and broadly applicable to other microorganisms. Our results provide valuable guidance for establishing CRISPR-Cpf1 as a versatile genome engineering tool in prokaryotic cells.
Public
Rapid Assembly of gRNA Arrays via Modular Cloning in Yeast
sb9b00041 Version 1 (Collection)
CRISPR is a versatile technology for genomic editing and regulation, but the expression of multiple gRNAs in S. cerevisiae has thus far been limited. We present here a simple extension to the Yeast MoClo Toolkit, which enables the rapid assembly of gRNA arrays using a minimal set of parts. Using a dual-PCR, Type IIs restriction enzyme Golden Gate assembly approach, at least 12 gRNAs can be assembled and expressed from a single transcriptional unit. We demonstrate that these gRNA arrays can stably regulate gene expression in a synergistic manner via dCas9-mediated repression. This approach expands the number of gRNAs that can be expressed in this model organism and may enable the versatile editing or transcriptional regulation of a greater number of genes in vivo.
Public
Rapid, Heuristic Discovery and Design of Promoter Collections in Non-Model Microbes for Industrial Applications
sb9b00061 Version 1 (Collection)
Well-characterized promoter collections for synthetic biology applications are not always available in industrially relevant hosts. We developed a broadly applicable method for promoter identification in atypical microbial hosts that requires no a priori understanding of cis-regulatory element structure. This novel approach combines bioinformatic filtering with rapid empirical characterization to expand the promoter toolkit and uses machine learning to improve the understanding of the relationship between DNA sequence and function. Here, we apply the method in Geobacillus thermoglucosidasius, a thermophilic organism with high potential as a synthetic biology chassis for industrial applications. Bioinformatic screening of G. kaustophilus, G. stearothermophilus, G. thermodenitrificans, and G. thermoglucosidasius resulted in the identification of 636 100 bp putative promoters, encompassing the genome-wide design space and lacking known transcription factor binding sites. Eighty of these sequences were characterized in vivo, and activities covered a 2-log range of predictable expression levels. Seven sequences were shown to function consistently regardless of the downstream coding sequence. Partition modeling identified sequence positions upstream of the canonical −35 and −10 consensus motifs that were predicted to strongly influence regulatory activity in Geobacillus, and artificial neural network and partial least squares regression models were derived to assess if there were a simple, forward, quantitative method for in silico prediction of promoter function. However, the models were insufficiently general to predict pre hoc promoter activity in vivo, most probably as a result of the relatively small size of the training data set compared to the size of the modeled design space.
Public
A Toolkit for Rapid Modular Construction of Biological Circuits in Mammalian Cells
sb9b00322 Version 1 (Collection)
The ability to rapidly assemble and prototype cellular circuits is vital for biological research and its applications in biotechnology and medicine. Current methods for the assembly of mammalian DNA circuits are laborious, slow, and expensive. Here we present the Mammalian ToolKit (MTK), a Golden Gate-based cloning toolkit for fast, reproducible, and versatile assembly of large DNA vectors and their implementation in mammalian models. The MTK consists of a curated library of characterized, modular parts that can be assembled into transcriptional units and further weaved into complex circuits. We showcase the capabilities of the MTK by using it to generate single-integration landing pads, create and deliver libraries of protein variants and sgRNAs, and iterate through dCas9-based prototype circuits. As a biological proof of concept, we demonstrate how the MTK can speed the generation of noninfectious viral circuits to enable rapid testing of pharmacological inhibitors of emerging viruses that pose a major threat to human health.
Public
Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution
sb8b00368 Version 1 (Collection)
Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control subcellular localization and activity. We previously engineered two optogenetic systems, the light activated nuclear shuttle (LANS) and the light-inducible nuclear exporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favorably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic “tool kit” for the research community.
Public
BioBits Health: Classroom Activities Exploring Engineering, Biology, and Human Health with Fluorescent Readouts
sb8b00381 Version 1 (Collection)
Recent advances in synthetic biology have resulted in biological technologies with the potential to reshape the way we understand and treat human disease. Educating students about the biology and ethics underpinning these technologies is critical to empower them to make informed future policy decisions regarding their use and to inspire the next generation of synthetic biologists. However, hands-on, educational activities that convey emerging synthetic biology topics can be difficult to implement due to the expensive equipment and expertise required to grow living cells. We present BioBits Health, an educational kit containing lab activities and supporting curricula for teaching antibiotic resistance mechanisms and CRISPR-Cas9 gene editing in high school classrooms. This kit links complex biological concepts to visual, fluorescent readouts in user-friendly freeze-dried cell-free reactions. BioBits Health represents a set of educational resources that promises to encourage teaching of cutting-edge, health-related synthetic biology topics in classrooms and other nonlaboratory settings.
Public
EcoFlex MoClo Toolkit (Freemont Lab)
EcoFlex_MoClo_Toolkit_Freemont_Lab_collection Version 1 (Collection)
EcoFlex MoClo Toolkit (Freemont Lab)
Public
Expanding One-Pot Cell-Free Protein Synthesis and Immobilization for On-Demand Manufacturing of Biomaterials
sb7b00383 Version 1 (Collection)
Fabrication of protein-based biomaterials is an arduous and time-consuming procedure with multiple steps. In this work, we describe a portable toolkit that integrates both cell-free protein synthesis (CFPS) and protein immobilization in one pot just by mixing DNA, solid materials, and a CFPS system. We have constructed a modular set of plasmids that fuse the N-terminus of superfolded green fluorescent protein (sGFP) with different peptide tags (poly­(6X)­Cys, poly­(6X)­His, and poly­(6X)­Lys), which drive the immobilization of the protein on the tailored material (agarose beads with different functionalities, gold nanorods, and silica nanoparticles). This system also enables the incorporation of azide-based amino acids into the nascent protein for its selective immobilization through copper-free click reactions. Finally, this technology has been expanded to the synthesis and immobilization of enzymes and antibody-binding proteins for the fabrication of functional biomaterials. This synthetic biological platform has emerged as a versatile tool for on-demand fabrication of therapeutic, diagnostic, and sensing biomaterials.
Public
MoClo Yeast Toolkit (Dueber Lab)
MoClo_Yeast_Toolkit_Dueber_Lab_collection Version 1 (Collection)
MoClo Yeast Toolkit (Dueber Lab)
Public
A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly
sb500366v Version 1 (Collection)
Saccharomyces cerevisiae is an increasingly attractive host for synthetic biology because of its long history in industrial fermentations. However, until recently, most synthetic biology systems have focused on bacteria. While there is a wealth of resources and literature about the biology of yeast, it can be daunting to navigate and extract the tools needed for engineering applications. Here we present a versatile engineering platform for yeast, which contains both a rapid, modular assembly method and a basic set of characterized parts. This platform provides a framework in which to create new designs, as well as data on promoters, terminators, degradation tags, and copy number to inform those designs. Additionally, we describe genome-editing tools for making modifications directly to the yeast chromosomes, which we find preferable to plasmids due to reduced variability in expression. With this toolkit, we strive to simplify the process of engineering yeast by standardizing the physical manipulations and suggesting best practices that together will enable more straightforward translation of materials and data from one group to another. Additionally, by relieving researchers of the burden of technical details, they can focus on higher-level aspects of experimental design.
Public
Yeast Pathway Kit: A Method for Metabolic Pathway Assembly with Automatically Simulated Executable Documentation
sb5b00250 Version 1 (Collection)
We have developed the Yeast Pathway Kit (YPK) for rational and random metabolic pathway assembly in Saccharomyces cerevisiae using reusable and redistributable genetic elements. Genetic elements are cloned in a suicide vector in a rapid process that omits PCR product purification. Single-gene expression cassettes are assembled in vivo using genetic elements that are both promoters and terminators (TP). Cassettes sharing genetic elements are assembled by recombination into multigene pathways. A wide selection of prefabricated TP elements makes assembly both rapid and inexpensive. An innovative software tool automatically produces detailed self-contained executable documentation in the form of pydna code in the narrative Jupyter notebook format to facilitate planning and sharing YPK projects. A d-xylose catabolic pathway was created using YPK with four or eight genes that resulted in one of the highest growth rates reported on d-xylose (0.18 h–1) for recombinant S. cerevisiae without adaptation. The two-step assembly of single-gene expression cassettes into multigene pathways may improve the yield of correct pathways at the cost of adding overall complexity, which is offset by the supplied software tool.
Public
Developing a Synthetic Biology Toolkit for Comamonas testosteroni , an Emerging Cellular Chassis for Bioremediation
sb7b00430 Version 1 (Collection)
Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-PT7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.
Public
An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae
sb8b00168 Version 1 (Collection)
The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage, and biomaterials. One such biomaterial is bacterial cellulose, which is a strong and ultrapure natural polymer used in tissue engineering scaffolds, wound dressings, electronics, food additives, and other products. However, despite the potential of Acetobacteraceae in biotechnology, there has been considerably little effort to fundamentally reprogram the bacteria for enhanced performance. One limiting factor is the lack of a well-characterized, comprehensive toolkit to control expression of genes in biosynthetic pathways and regulatory networks to optimize production and cell viability. Here, we address this shortcoming by building an expanded genetic toolkit for synthetic biology applications in Acetobacteraceae. We characterized the performance of multiple natural and synthetic promoters, ribosome binding sites, terminators, and degradation tags in three different strains, namely, Gluconacetobacter xylinus ATCC 700178, Gluconacetobacter hansenii ATCC 53582, and Komagataeibacter rhaeticus iGEM. Our quantitative data revealed strain-specific and common design rules for the precise control of gene expression in these industrially relevant bacterial species. We further applied our tools to synthesize a biodegradable cellulose-chitin copolymer, adjust the structure of the cellulose film produced, and implement CRISPR interference for ready down-regulation of gene expression. Collectively, our genetic parts will enable the efficient engineering of Acetobacteraceae bacteria for the biomanufacturing of cellulose-based materials and other commercially valuable products.
Public
The Geobacillus Plasmid Set: A Modular Toolkit for Thermophile Engineering
sb5b00298 Version 1 (Collection)
Geobacillus thermoglucosidasius is a Gram-positive thermophile of industrial interest that exhibits rapid growth and can utilize a variety of plant-derived feedstocks. It is an attractive chassis organism for high temperature biotechnology and synthetic biology applications but is currently limited by a lack of available genetic tools. Here we describe a set of modular shuttle vectors, including a promoter library and reporter proteins. The compact plasmids are composed of interchangeable modules for molecular cloning in Escherichia coli and stable propagation in G. thermoglucosidasius and other Geobacillus species. Modules include two origins of replication, two selectable markers and three reporter proteins for characterization of gene expression. For fine-tuning heterologous expression from these plasmids, we include a characterized promoter library and test ribosome binding site design. Together, these gene expression tools and a standardized plasmid set can facilitate modularity and part exchange to make Geobacillus a thermophile chassis for synthetic biology.
Public
A Living Eukaryotic Autocementation Kit from Surface Display of Silica Binding Peptides on Yarrowia lipolytica
sb6b00085 Version 1 (Collection)
With the development of civil engineering, the demand for suitable cementation materials is increasing rapidly. However, traditional cementation methods are not eco-friendly enough and more sustainable approach such as biobased cementation is required. To meet such demand, Euk.cement, a living eukaryotic cell-based biological autocementation kit, was created in this work. Through the surface display of different silica binding peptides on the fungus Yarrowia lipolytica, Euk.cement cells can immobilize onto any particles with a silica containing surface with variable binding intensity. Meanwhile, recombinant MCFP3 released from the cells will slowly consolidate this binding of cells to particles. The metabolism of immobilized living cells will finally complete the carbonate sedimentation and tightly stick the particles together. The system is designed to be initiated by blue light, making it controllable. This autocementation kit can be utilized for industrial and environmental applications that fit our concerns on making the cementation process eco-friendly.
Public
Recursive DNA Assembly Using Protected Oligonucleotide Duplex Assisted Cloning (PODAC)
sb7b00017 Version 1 (Collection)
A problem rarely tackled by current DNA assembly methods is the issue of cloning additional parts into an already assembled construct. Costly PCR workflows are often hindered by repeated sequences, and restriction based strategies impose design constraints for each enzyme used. Here we present Protected Oligonucleotide Duplex Assisted Cloning (PODAC), a novel technique that makes use of an oligonucleotide duplex for iterative Golden Gate cloning using only one restriction enzyme. Methylated bases confer protection from digestion during the assembly reaction and are removed during replication in vivo, unveiling a new cloning site in the process. We used this method to efficiently and accurately assemble a biosynthetic pathway and demonstrated its robustness toward sequence repeats by constructing artificial CRISPR arrays. As PODAC is readily amenable to standardization, it would make a useful addition to the synthetic biology toolkit.
Public
Remote Control of Mammalian Cells with Heat-Triggered Gene Switches and Photothermal Pulse Trains
sb7b00455 Version 1 (Collection)
Engineered T cells are transforming broad fields in biomedicine, yet our ability to control cellular activity at specific anatomical sites remains limited. Here we engineer thermal gene switches to allow spatial and remote control of transcriptional activity using pulses of heat. These gene switches are constructed from the heat shock protein HSP70B′ (HSPA6) promoter, show negligible basal transcriptional activity, and activate within an elevated temperature window of 40–45 °C. Using engineered Jurkat T cells implanted in vivo, we use plasmonic photothermal heating to trigger gene expression at specific sites to levels greater than 200-fold. We show that delivery of heat as thermal pulse trains significantly increase cellular thermal tolerance compared to continuous heating curves with identical area-under-the-curve (AUC), enabling long-term control of gene expression in Jurkat T cells. This approach expands the toolkit of remotely controlled genetic devices for basic and translational applications in synthetic immunology.
Public
5S rRNA Promoter for Guide RNA Expression Enabled Highly Efficient CRISPR/Cas9 Genome Editing in Aspergillus niger
sb7b00456 Version 1 (Collection)
The CRISPR/Cas9 system is a revolutionary genome editing tool. However, in eukaryotes, search and optimization of a suitable promoter for guide RNA expression is a significant technical challenge. Here we used the industrially important fungus, Aspergillus niger, to demonstrate that the 5S rRNA gene, which is both highly conserved and efficiently expressed in eukaryotes, can be used as a guide RNA promoter. The gene editing system was established with 100% rates of precision gene modifications among dozens of transformants using short (40-bp) homologous donor DNA. This system was also applicable for generation of designer chromosomes, as evidenced by deletion of a 48 kb gene cluster required for biosynthesis of the mycotoxin fumonisin B1. Moreover, this system also facilitated simultaneous mutagenesis of multiple genes in A. niger. We anticipate that the use of the 5S rRNA gene as guide RNA promoter can broadly be applied for engineering highly efficient eukaryotic CRISPR/Cas9 toolkits. Additionally, the system reported here will enable development of designer chromosomes in model and industrially important fungi.
Public
A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae
sb500363y Version 1 (Collection)
Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR–VP16 activator with differential affinity and therefore result in different TetR–VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 105; a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR–VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes.
Public
Design and Evaluation of Synthetic Terminators for Regulating Mammalian Cell Transgene Expression
sb8b00285 Version 1 (Collection)
Tuning heterologous gene expression in mammalian production hosts has predominantly relied upon engineering the promoter elements driving the transcription of the transgene. Moreover, most regulatory elements have borrowed genetic sequences from viral elements. Here, we generate a set of 10 rational and 30 synthetic terminators derived from nonviral elements and evaluate them in the HT1080 and HEK293 cell lines to demonstrate that they are comparable in terms of tuning gene expression/protein output to the viral SV40 element and often require less sequence footprint. The mode of action of these terminators is determined to be an increase in mRNA half-life. Furthermore, we demonstrate that constructs comprising completely nonviral regulatory elements (i.e., promoters and terminators) can outperform commonly used, strong viral based elements by nearly 2-fold. Ultimately, this novel set of terminators expanded our genetic toolkit for engineering mammalian host cells.
Public
Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H 2 S as a Signaling Molecule for Quorum Sensing
sb9b00210 Version 1 (Collection)
Microorganisms often use specific autoinducers other than common metabolites for quorum sensing (QS). Herein, we demonstrated that Escherichia coli produced sulfide (H2S, HS–, and S2–) with the concentrations proportionally correlated to its cell density. We then designed synthetic gene circuits that used H2S as an autoinducer for quorum sensing. A sulfide/quinone oxidoreductase converted diffusible H2S to indiffusible hydrogen polysulfide (HS n H, n ≥ 2), and a gene regulator CstR sensed the latter to turn on the gene expression. We constructed three element libraries, with which 24 different circuits could be assembled for adjustable sensitivity to cell density. The H2S-mediated gene circuits endowed E. coli cells within the same batch or microcolony with highly synchronous behaviors. Using them we successfully constructed cell factories capable of an autonomous switch from growth phase to production phase. Thus, these circuits provide a new tool-kit for metabolic engineering and synthetic biology.
Showing 1 - 33 of 33 result(s)